3.877 \(\int \frac{x^3}{(a+b x^2+c x^4)^3} \, dx\)

Optimal. Leaf size=113 \[ \frac{2 a+b x^2}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac{3 b \left (b+2 c x^2\right )}{4 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac{3 b c \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{5/2}} \]

[Out]

(2*a + b*x^2)/(4*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)^2) - (3*b*(b + 2*c*x^2))/(4*(b^2 - 4*a*c)^2*(a + b*x^2 + c*
x^4)) + (3*b*c*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(5/2)

________________________________________________________________________________________

Rubi [A]  time = 0.0903027, antiderivative size = 113, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 18, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.278, Rules used = {1114, 638, 614, 618, 206} \[ \frac{2 a+b x^2}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac{3 b \left (b+2 c x^2\right )}{4 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac{3 b c \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[x^3/(a + b*x^2 + c*x^4)^3,x]

[Out]

(2*a + b*x^2)/(4*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4)^2) - (3*b*(b + 2*c*x^2))/(4*(b^2 - 4*a*c)^2*(a + b*x^2 + c*
x^4)) + (3*b*c*ArcTanh[(b + 2*c*x^2)/Sqrt[b^2 - 4*a*c]])/(b^2 - 4*a*c)^(5/2)

Rule 1114

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_.), x_Symbol] :> Dist[1/2, Subst[Int[x^((m - 1)/2)*(a +
 b*x + c*x^2)^p, x], x, x^2], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[(m - 1)/2]

Rule 638

Int[((d_.) + (e_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b*d - 2*a*e + (2*c*d -
b*e)*x)*(a + b*x + c*x^2)^(p + 1))/((p + 1)*(b^2 - 4*a*c)), x] - Dist[((2*p + 3)*(2*c*d - b*e))/((p + 1)*(b^2
- 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[2*c*d - b*e, 0] && NeQ[b^
2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2]

Rule 614

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^(p + 1))/((p +
1)*(b^2 - 4*a*c)), x] - Dist[(2*c*(2*p + 3))/((p + 1)*(b^2 - 4*a*c)), Int[(a + b*x + c*x^2)^(p + 1), x], x] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && LtQ[p, -1] && NeQ[p, -3/2] && IntegerQ[4*p]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{x^3}{\left (a+b x^2+c x^4\right )^3} \, dx &=\frac{1}{2} \operatorname{Subst}\left (\int \frac{x}{\left (a+b x+c x^2\right )^3} \, dx,x,x^2\right )\\ &=\frac{2 a+b x^2}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}+\frac{(3 b) \operatorname{Subst}\left (\int \frac{1}{\left (a+b x+c x^2\right )^2} \, dx,x,x^2\right )}{4 \left (b^2-4 a c\right )}\\ &=\frac{2 a+b x^2}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac{3 b \left (b+2 c x^2\right )}{4 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}-\frac{(3 b c) \operatorname{Subst}\left (\int \frac{1}{a+b x+c x^2} \, dx,x,x^2\right )}{2 \left (b^2-4 a c\right )^2}\\ &=\frac{2 a+b x^2}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac{3 b \left (b+2 c x^2\right )}{4 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac{(3 b c) \operatorname{Subst}\left (\int \frac{1}{b^2-4 a c-x^2} \, dx,x,b+2 c x^2\right )}{\left (b^2-4 a c\right )^2}\\ &=\frac{2 a+b x^2}{4 \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )^2}-\frac{3 b \left (b+2 c x^2\right )}{4 \left (b^2-4 a c\right )^2 \left (a+b x^2+c x^4\right )}+\frac{3 b c \tanh ^{-1}\left (\frac{b+2 c x^2}{\sqrt{b^2-4 a c}}\right )}{\left (b^2-4 a c\right )^{5/2}}\\ \end{align*}

Mathematica [A]  time = 0.103696, size = 114, normalized size = 1.01 \[ \frac{\frac{\left (b^2-4 a c\right ) \left (2 a+b x^2\right )}{\left (a+b x^2+c x^4\right )^2}-\frac{12 b c \tan ^{-1}\left (\frac{b+2 c x^2}{\sqrt{4 a c-b^2}}\right )}{\sqrt{4 a c-b^2}}-\frac{3 b \left (b+2 c x^2\right )}{a+b x^2+c x^4}}{4 \left (b^2-4 a c\right )^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x^3/(a + b*x^2 + c*x^4)^3,x]

[Out]

(((b^2 - 4*a*c)*(2*a + b*x^2))/(a + b*x^2 + c*x^4)^2 - (3*b*(b + 2*c*x^2))/(a + b*x^2 + c*x^4) - (12*b*c*ArcTa
n[(b + 2*c*x^2)/Sqrt[-b^2 + 4*a*c]])/Sqrt[-b^2 + 4*a*c])/(4*(b^2 - 4*a*c)^2)

________________________________________________________________________________________

Maple [A]  time = 0.184, size = 142, normalized size = 1.3 \begin{align*}{\frac{-b{x}^{2}-2\,a}{ \left ( 16\,ac-4\,{b}^{2} \right ) \left ( c{x}^{4}+b{x}^{2}+a \right ) ^{2}}}-{\frac{3\,bc{x}^{2}}{2\, \left ( 4\,ac-{b}^{2} \right ) ^{2} \left ( c{x}^{4}+b{x}^{2}+a \right ) }}-{\frac{3\,{b}^{2}}{4\, \left ( 4\,ac-{b}^{2} \right ) ^{2} \left ( c{x}^{4}+b{x}^{2}+a \right ) }}-3\,{\frac{bc}{ \left ( 4\,ac-{b}^{2} \right ) ^{5/2}}\arctan \left ({\frac{2\,c{x}^{2}+b}{\sqrt{4\,ac-{b}^{2}}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x^3/(c*x^4+b*x^2+a)^3,x)

[Out]

1/4*(-b*x^2-2*a)/(4*a*c-b^2)/(c*x^4+b*x^2+a)^2-3/2*b/(4*a*c-b^2)^2/(c*x^4+b*x^2+a)*x^2*c-3/4*b^2/(4*a*c-b^2)^2
/(c*x^4+b*x^2+a)-3*b/(4*a*c-b^2)^(5/2)*c*arctan((2*c*x^2+b)/(4*a*c-b^2)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(c*x^4+b*x^2+a)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.51806, size = 1719, normalized size = 15.21 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(c*x^4+b*x^2+a)^3,x, algorithm="fricas")

[Out]

[-1/4*(6*(b^3*c^2 - 4*a*b*c^3)*x^6 + a*b^4 + 4*a^2*b^2*c - 32*a^3*c^2 + 9*(b^4*c - 4*a*b^2*c^2)*x^4 + 2*(b^5 +
 a*b^3*c - 20*a^2*b*c^2)*x^2 - 6*(b*c^3*x^8 + 2*b^2*c^2*x^6 + 2*a*b^2*c*x^2 + (b^3*c + 2*a*b*c^2)*x^4 + a^2*b*
c)*sqrt(b^2 - 4*a*c)*log((2*c^2*x^4 + 2*b*c*x^2 + b^2 - 2*a*c + (2*c*x^2 + b)*sqrt(b^2 - 4*a*c))/(c*x^4 + b*x^
2 + a)))/((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^2*c^4 - 64*a^3*c^5)*x^8 + a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2
 - 64*a^5*c^3 + 2*(b^7*c - 12*a*b^5*c^2 + 48*a^2*b^3*c^3 - 64*a^3*b*c^4)*x^6 + (b^8 - 10*a*b^6*c + 24*a^2*b^4*
c^2 + 32*a^3*b^2*c^3 - 128*a^4*c^4)*x^4 + 2*(a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3*c^2 - 64*a^4*b*c^3)*x^2), -1/4*
(6*(b^3*c^2 - 4*a*b*c^3)*x^6 + a*b^4 + 4*a^2*b^2*c - 32*a^3*c^2 + 9*(b^4*c - 4*a*b^2*c^2)*x^4 + 2*(b^5 + a*b^3
*c - 20*a^2*b*c^2)*x^2 - 12*(b*c^3*x^8 + 2*b^2*c^2*x^6 + 2*a*b^2*c*x^2 + (b^3*c + 2*a*b*c^2)*x^4 + a^2*b*c)*sq
rt(-b^2 + 4*a*c)*arctan(-(2*c*x^2 + b)*sqrt(-b^2 + 4*a*c)/(b^2 - 4*a*c)))/((b^6*c^2 - 12*a*b^4*c^3 + 48*a^2*b^
2*c^4 - 64*a^3*c^5)*x^8 + a^2*b^6 - 12*a^3*b^4*c + 48*a^4*b^2*c^2 - 64*a^5*c^3 + 2*(b^7*c - 12*a*b^5*c^2 + 48*
a^2*b^3*c^3 - 64*a^3*b*c^4)*x^6 + (b^8 - 10*a*b^6*c + 24*a^2*b^4*c^2 + 32*a^3*b^2*c^3 - 128*a^4*c^4)*x^4 + 2*(
a*b^7 - 12*a^2*b^5*c + 48*a^3*b^3*c^2 - 64*a^4*b*c^3)*x^2)]

________________________________________________________________________________________

Sympy [B]  time = 9.81427, size = 490, normalized size = 4.34 \begin{align*} \frac{3 b c \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{5}}} \log{\left (x^{2} + \frac{- 192 a^{3} b c^{4} \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{5}}} + 144 a^{2} b^{3} c^{3} \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{5}}} - 36 a b^{5} c^{2} \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{5}}} + 3 b^{7} c \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{5}}} + 3 b^{2} c}{6 b c^{2}} \right )}}{2} - \frac{3 b c \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{5}}} \log{\left (x^{2} + \frac{192 a^{3} b c^{4} \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{5}}} - 144 a^{2} b^{3} c^{3} \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{5}}} + 36 a b^{5} c^{2} \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{5}}} - 3 b^{7} c \sqrt{- \frac{1}{\left (4 a c - b^{2}\right )^{5}}} + 3 b^{2} c}{6 b c^{2}} \right )}}{2} - \frac{8 a^{2} c + a b^{2} + 9 b^{2} c x^{4} + 6 b c^{2} x^{6} + x^{2} \left (10 a b c + 2 b^{3}\right )}{64 a^{4} c^{2} - 32 a^{3} b^{2} c + 4 a^{2} b^{4} + x^{8} \left (64 a^{2} c^{4} - 32 a b^{2} c^{3} + 4 b^{4} c^{2}\right ) + x^{6} \left (128 a^{2} b c^{3} - 64 a b^{3} c^{2} + 8 b^{5} c\right ) + x^{4} \left (128 a^{3} c^{3} - 24 a b^{4} c + 4 b^{6}\right ) + x^{2} \left (128 a^{3} b c^{2} - 64 a^{2} b^{3} c + 8 a b^{5}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x**3/(c*x**4+b*x**2+a)**3,x)

[Out]

3*b*c*sqrt(-1/(4*a*c - b**2)**5)*log(x**2 + (-192*a**3*b*c**4*sqrt(-1/(4*a*c - b**2)**5) + 144*a**2*b**3*c**3*
sqrt(-1/(4*a*c - b**2)**5) - 36*a*b**5*c**2*sqrt(-1/(4*a*c - b**2)**5) + 3*b**7*c*sqrt(-1/(4*a*c - b**2)**5) +
 3*b**2*c)/(6*b*c**2))/2 - 3*b*c*sqrt(-1/(4*a*c - b**2)**5)*log(x**2 + (192*a**3*b*c**4*sqrt(-1/(4*a*c - b**2)
**5) - 144*a**2*b**3*c**3*sqrt(-1/(4*a*c - b**2)**5) + 36*a*b**5*c**2*sqrt(-1/(4*a*c - b**2)**5) - 3*b**7*c*sq
rt(-1/(4*a*c - b**2)**5) + 3*b**2*c)/(6*b*c**2))/2 - (8*a**2*c + a*b**2 + 9*b**2*c*x**4 + 6*b*c**2*x**6 + x**2
*(10*a*b*c + 2*b**3))/(64*a**4*c**2 - 32*a**3*b**2*c + 4*a**2*b**4 + x**8*(64*a**2*c**4 - 32*a*b**2*c**3 + 4*b
**4*c**2) + x**6*(128*a**2*b*c**3 - 64*a*b**3*c**2 + 8*b**5*c) + x**4*(128*a**3*c**3 - 24*a*b**4*c + 4*b**6) +
 x**2*(128*a**3*b*c**2 - 64*a**2*b**3*c + 8*a*b**5))

________________________________________________________________________________________

Giac [A]  time = 28.591, size = 193, normalized size = 1.71 \begin{align*} -\frac{3 \, b c \arctan \left (\frac{2 \, c x^{2} + b}{\sqrt{-b^{2} + 4 \, a c}}\right )}{{\left (b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}\right )} \sqrt{-b^{2} + 4 \, a c}} - \frac{6 \, b c^{2} x^{6} + 9 \, b^{2} c x^{4} + 2 \, b^{3} x^{2} + 10 \, a b c x^{2} + a b^{2} + 8 \, a^{2} c}{4 \,{\left (c x^{4} + b x^{2} + a\right )}^{2}{\left (b^{4} - 8 \, a b^{2} c + 16 \, a^{2} c^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x^3/(c*x^4+b*x^2+a)^3,x, algorithm="giac")

[Out]

-3*b*c*arctan((2*c*x^2 + b)/sqrt(-b^2 + 4*a*c))/((b^4 - 8*a*b^2*c + 16*a^2*c^2)*sqrt(-b^2 + 4*a*c)) - 1/4*(6*b
*c^2*x^6 + 9*b^2*c*x^4 + 2*b^3*x^2 + 10*a*b*c*x^2 + a*b^2 + 8*a^2*c)/((c*x^4 + b*x^2 + a)^2*(b^4 - 8*a*b^2*c +
 16*a^2*c^2))